
L

MODELING PARTITIONED AND REPLICATED DATABASES

USING AN EXTENDED CONCEPT OF GENERALIZATION·

Stanley Y. W. Su Amrish Kumar·'"

Database Systems Research and Development Center

University of Florida, Gainesville, Florida

All S'l'RAC'%
partitioning and r.plication of data are very
important concepts in logical database de.igD of
both c.ntraliz.d and distribut.d databa.... It i.
very important that the r.lation.hips among the
vertical and/or horizontal partition. of a relati
on and th.' information about data replication b•
• xplicitly mod.led and dynamically maintain.d .0
that th.ir integrity and consistency can b. autoa
atically .nforced by a DBMS or a distribut.d DBMS.
In this paper, pres.nt an ext.nd.d g.n.ralizat
ion concept and shov hoy it can he USQd to $~li~

itly mod.l various typ•• of datil pa:ttitj_Q!ll~ ',;ith
or ...ithout r.plication. Storagl> Cip6:cat:iQ!l! J;'\l1",I.'
for th••• partition type. are defin<;:d fOK il!tOllg:l:1
ty control purpos.s and rule. tox lII~difyio9 the
.chema at run tim.....h.n partition. are dynamical
ly cr.ated or modifi.d, are also present.d. Integ
rity control can b••nforced by follo...ing the
• odifi.d mod.l and con.traint. of th••• parti
tion•.

DlTB.ODOcnOH

A database contains tilll.-varying op.rational data
of an .nt.rpris. and i. d.fin.d by a .chea•.
Partitioning in database d••ign i. tn. proc.s. of
a••igning a logical conc.pt (r.lation) defin.d in
the logical schema to s.veral phy.ical obj.ct.
(fil ••) in a stored databa••. For a di.tribut.d
databa•• the notion of partitioning i. equival.nt
to the id.a of fra9lll.nting some r.lation and stor
ing the fraqm.nt. at differ.nt sit•• in the di.t
ribut.d databa••. Partitioning a databa.....ill
~u. involve the folloving d.ci.ion., 1) logic.l
d.ci.ion., conc.rning the structur. and coapo.i
tion of the fragm.nt. of a r.lation, and ~)

diatribution and allocation d.ci.ion. conc.rning
the placem.nt of fra9lllent. at various .it••.

Th. partitioning of a data file can be achi
• v.d in t ...o ...ay.. Fir.t, the column. (attribut••)
of a r.lation can be .emantically cat.goriz.d and
partition.d to form s.v.ral s.parat••ntity typ••
in the conc.ptual d••ign of a databa... Each .nti
ty type i. d.fin.d ov.r a .1II411.r number of attri
bute. compar.d to the original r.la~ion. Thi.
method is ref.rred to a. VEa~ICAL PARTITIONING.
S.condly,. a relation can be subdivid.d into group.
each of ...hich contain. tupl •• that satisfy a c.rt
ain pr.dicat•. All group. have the sam. attribut••
of ~h. original relation. Thi. mod. i. r.f.rr.d to

"'thi. re••arch is supported by the Ilavy Manufac

turing T.chnology Program through the Ilational

Bureau of Standards grant .60llAB4D0017.

··Current addr.s.:Honeyvell Comput.r Sci.nc•• Cen

tez, 1000 Boon. Av•. Ilorth, Golden Vall.y MN554~7.

To appear: Proe. of COMPSAC '87, Tokyo,

a. BO~ZONTAL PA&~I~IONXNG. In many ca.... hov.v
.r, it i. advantag.ou. to partition a r.lation
both horizontally and v.rtically. thus yielding
block./ cell. of tuple. or .ubtupl •• from the
original r.lation.

Th. motivation behind partitioning a database
are fourfold,(l) A••uming tha~ each .it. i. an
independ.nt database that i. part of a homogeneous
or heterogen.ou. databas.. partitioning increas••
the locality of data at .ach .it. and <!lllov., at
the .am. tim., a c e ••• to the data from o~h.r
sit... (~) Partitioning i. u••d during the de.ign
of !l cl",1::r.biJ,llf, to J.lIlprov. the performance of trans
~ctiov. (t~~~e~ ~CC~6~ .pe.d). Sinc. the fraqm.nt.
cOlllllis'l:, ",Z .If, s s /Sltllllller r.cords, f t: pages in
••coll~ary m~ory n••d to b. acce•••d to proce.. a
transaction. rI'a'3'1Ile'rlt allocation .hould lIIaxillliz.
the amount of local tran.action proc.s.ing if the
fraqm.nt. match the r.quirement. of transaction •
at a particular .it.. (3) partitioning reduc••
the data transmi••ion co.t involved in moving data
from one site to anoth.r. This co.t mayor may not
b••ignificant d.p.nding on hov lIIany site. contain
the rel.vant data, the actual .iz•• of data invol
v.d in transmi.sion, and the o.t...ork structure and
speed. (4) Finally, partitioning i. on. solution
to the problem of storage limitation at netvork
.it... In such ca.... the cost and feasibili~y of
storage expan.ion mu.t b..... igh.d against the
add.d data communication co.t•.

If a databa•• i. partitioned and some data i.
replicat.d at multiple sit•• in a net...ork syst&lll.
it i. important for the database management sys~&III

to k••p track of the r.lationships among the pdrt
ition.d data file. and the locationhere the
replicated data re.id. SO that da~abas. in~egrity

can b••ystamatically .nforc.d. A numb.r of con.
traints are thus r.quir.d to b. associat.d ...ith
these partition. SO that the distributed DBMS can
dynamically monitor the partitioning and replicat
ion relationship. of the fragm.nted data files and
enforce con.i.~.ncy and integrity of the database .
Thes. cons~raint. take the form of storage operat
ion rulhich dictat....hat change. IIIUst be made
to related partitions, if a chang. is attempted on
.ome partition. The partitioning, replication. and
distribution information along with the s~orage

op.ration rule. are not modeled explicitly ~n the
present di.tribut.d database managelllen~ sys~ems.

i .•. th.y are not includ.d in tile .chema defini~
ion of a databa... In order for a distribu~ed DBMS
to enforc. the integrity of partition.d databa••s.
they n.ed to b. d.fin.d by the DBA .olll h.r•. if
not in the schema. Sinc. parti~ioning. r.plication
and distribution are gen.rally bas.d on the seman
tic properties of the data and th.ir usage sta~is
tic...... believe that ~hey should b. a part of the
conc.ptual lIIodel of a dis~ribu~ed datab•••.

Japan, Oct. 1987.

http:ext.nd.d

A large body of York on Partitioning ba.
been done on the selection and allocation of
fragments in distributed databases, taking into
account semantics of the data. user requirements
and statistics, and minimization of access time
(1 - 9). In tbis paper. ye do not concern ourse
lves Yith the above mentioned problems but pro
pose a representation technique for partitioning
information using an extended concept of genera
lization. Tbis tecbnique allaws the repre.enta
tion of partition information a. part of the
global conceptual view of a distributed data
ba.e.

The concept of GENERALI£ATION '101. intro
duced by works of artificial intellegence (e.g.
(l~)). It va. first used in database modeling by
Smith and Smith (11). This concept is a powerful
tool for the expression and solution of a number
of problems related to clatabase modeling. The
importance of generalization in database integ
ration is emphasized in tbe MULTIBASE project
(16,17) Yhere it is used to resolve several
structural and clata inconsistencies that might
exist Within the different schemas to be integ
rated (181. Properties of general ization hier
archies are examined in (101. Generalization
could also be used to resolve similar inconsis
tencie. in the related but clifferent problem of
view integration (19]. In the context of clata
bas8 partitioning, ye observe that tbe partit
ions are very closely related to each other as
they are formed from the same relation, and
contain information about the .ame entity type
and can thus be treated a. member. of a more
general class. By extending the concept of gene
ralization to include set relationships as con
straints, generalization can be used to model
partitioned clatabase•.

Tbis paper is organized as follaws: Section
2 dlucribes the generalization construct of a
Semantic As.ociation Model (SAH-) and its .et
relationsbips. In section 3, the modeling of
borizontal and vertical partitioned clata Yith
/Yithout replication using the extended genera
lization i. presented. Included in this section
is a discussion of the storage operation rules,
Yhicb must be applied to related partition.
cluring update in orcler to maintain clataba.e
consistency and integrity. Section 4 i. a discu
ision on tbe maintaining of partition informa
tion at run time.

In this section, ye briefly describe the S..aD
tic Associatio.. Model. (SAM-) (20,211 and empha
size on tbe notion of generalization supported
by it. Several constructs of SAM- yill be used
to model borizontal and vertical partitioned
clatabase. in section 3.

, Data modeling in SAM- revolve. around the
notion of CONCEPTS(or OBJEC'rS) and ASSOC:tATIONS.
Tbe model distinguisbes tYO general type. of
concepts : ATOMIC and NON-ATOMIC. An atomic
concept is a non-decomposable, observable pbysi
cal object, abstract object. event or any data
element tbat the database u.er regards a. a
fundamental information unit and Ybose meaning
is as.umed to be understood and thus need not be
clefined. An employee'B age '25'. tbe nallle 'Jobn'
are examples of atomic concepts. A non-atomic
concept on the other band. is a phYlical object.

abstract object or event Ybose meaning i. clef in
ed (described) in term. of otber atomic and/or
non-atomic concept.. For. example the concept of
an employee can be clescribed using the concepts
name. age. address. and salary.

Atolllic ancl/or non-atomic concepts can be
grouped togetber to clescribe anotber non-atomic
concept. Tbis grouping is called an ASSOCIATION.
Different types of associations can be distin
gUished basecl on the different structural prope
rties.operational characteristics and semantic
constraints tbat tbe user or DBA yants to asso
ciate Yith these groupings of concepts. If the
user or DBA specifies that a concept is of a
certain association type. a DBMS using SAM
would process the concept in accordance Yith tbe
semantics associated Yith tbat type.

SAM- provicles the user Yitb seven sucb
associations (modeling constructs). A. cletailed
clescription of SAM- is out of the scope of this
paper. We will. bawever. examine the generaliza
tion association in detail as it has been founcl
useful for modeling partitioned databases Yitb/
Yithout replication.

The notion of generalization yas first
used by Smith and Smitb in clatabase York. The
generalization association in SAM- is defined in
much the same yay in tbat concepts can be
grouped together based on tbeir generic nature
to form a more general concept. Hoyever a fey
enbancements have been macle to the original
concept to make it more useful in clata modeling.

In SAM-. a genera 1 i za tion as soci at ion i i
formed by grouping a number of generically rela
ted concept types Yhicb can tbemselves be clefin
ed by tbe same set or clifferent sets of attri
butes. Tbe key attributes of these component
concept types. boyever. must bave the same unde
rlying clolllain; that is they must clraY their
values frolll tbe same set of clata elements. The
set of entities Ybicb are uniquely defined by
tbe set of key attribute v a Lu e s of a component
concept type mayor may not overlap Yitb that of
another component concept type (the sets mayor
may not be exclusive). For example in figure 1,
the two AGGREGATION nodes FOREIGN_PR.OJECT and
DOMESTIC_PROJECT. representing tYO kincls of
projects in a factory can be grouped togetber to
form the more general concept of PROJECT.

In tbe grapbic representation. tbe nodes
represent concept types. Each node is labelled
by its association type (G for Generalization.
A for Agg~e~atioD and M for Me.m.bership). It is
also named for user reference. The directecl arcs
in tbe graph represent attributes Ybose under
lying clomains are pointed to by tbe directecl
arcs. The crossed arcs represent the key attri
butes. The membership aSSOCiation (M nocles)
clefine the clomains PI. PNAHE. AMT and DEPT
respectively. Each clomain contains a set of
homogeneous data elements. The aggregation asso
ciation (A nodes) define entity types by ~heir

attributes (arcs). The occurrences of an aggre
gation association are drayn from tbe cartesian
product of the clomain value sets.

As illustrated in figure 1. ~he set of
attributes that defines tbe component concept
type FOR.EIGN_PROJECT is different from ~hat of
~he other component concept type DOMESTIC_PR.O
JECT. Their key attributes are, hovever, clefined
over the same domain (~he same membership assoc
iation. PI). The G node PROJECT is tbe general

hation of rOREIGH_PROJKC~and DO"ES~IC_PRO

JEC~. Its occurrences can be formed by either
taking the OtrrERJOIM (13.14.15 J of the occurren
ces of FOREICN_PR~ and DOMESTIC_PROJECT over
their common key attribute or the union of their
key v a Lu e s . The former representlltion is more
suitllble for presenting the generllli%ed concept
type to the user and the latter i5 a more conde
nsed form suitable for internal machine represe
ntlltion.

The operation of outerjoin i. an enhance
ment of the normal JOIH operator in relational
algebra. introduced to preserve the information
of unmlltched tuples which is lost during 4 nor
mal join operation. In taking the outerjoin, we
preserve such informlltion by llppending certllin
lldditional tuples to the result of the normal
join. There is one lldditionlll tuple for ellch
unmlltched tuple from ellch of the relations. It
consists of a copy of that unmatched tuple.
extended with null values in other attribute
positions. Figure 2 illustrate. an example of an
OUter Equijo~n. Several constraints that can be
specified with the generali%ation association in
order to make it more meaningful for data model
ing. Among other applications. these constraints
have been found useful for modeling CAD/CAM data
and partitioned databases. The constraints can
be viewed as relationships between the sets of
key attribute value. of two component concept
type. of the G node.

Figure 1 illustrates the constraint of Set
Exclusion (5%). The two sets of entities repre
sented by the occurrences associated with the
llggregation nodes FOREIGN_PR~ and DOKESTIC
_PROJECT llre mutually exclusive. That i. to say
that no key value thllt represents II foreign
project is allowed to represent a domestic proj
ect. If Pt-l is a foreign project. then there
Clln be no domestic project with pt-l.

Figure 3 illustrates the constraint of Set
Equality (SE). which specifies that any entity
of GEOHETRXC_INFOR must also be an entity in
MATERIAL_SPEC llnd LXFT_SPEC and vice versa. In
the case of the non-key attributes that define
the three llggregation nodes being different. the
existence of one key value in one node (Design
-357 in the occurrence of GEOME'rRl:C_IHFOll.) would
require that the same key value be in an occur
rence of MA~ERIAL SPEC and also in an occurrence
of LIFT_SPEC even-though the non-key value. of
these occurrence••ay differ or .ay have null
villues.

Figure 4 shows the constraint Set-Subset
(ST-SS) which specifies that a TOP SECIE'r PROJ
is II PROJEC'% but a PROJJ:C'% lIlay or-."y not- be a
TOP_ SECRE'r_PROJ. Again, ve llre considering the
constraint in terms of the key v a Lue , that is.
llny key value which represents a
TOP_SECRE'%_PROJ lIlUSt be among the set of ~ey

values that repre.ent PROJEC'% but the reverse
mllY not be true.

In figure 5. we illustrate the S!:2'
IH'l'ERS!:CTl:OH (SX) constraint in which the sets
of ~eys which represent occurrences of the
component concept types mOlY ev e r Lap , that is,
the intersection of the two sets may not be
empty. Figure 5 1II0dels the fact that a MANAGER
mayor mllY not be II PlI.OJECT_LEADEI llnd vice
versa.

It should be clellr from the llbove examples,
that the constrllints llssocillted with the genera-

li%ation association llre the set reliltionshipa
between the sets of entities represented by the
occurrences of the component concept types, If
more thlln two sets are involved. the set rela
tionships among them Clln be grllphically represe
nted by explicitly lin~ing the lilbeled llrcs
between each pllir of component concept types llS
illustrated in figure 3.

Although the examples seem to suggest that
a generali%ation as se e t a e re e e an only invol v e
concepts formed by the aggregation llsaocilltions.
this. ill general is not true. It can be used to
generali%e concepts formed by all llssocilltion
types of SAMe (inclUding itself). For example.
a G node PART' can be formed over two M nodes
FOREIGN_PART' and DOMESTIC PART'.

We note here that even-though a generllli%at-'
ion can be defined over associations other thlln
llggregation. the component concept types must be
defined by the Sallle llssoeilltion type. tv en
though it is theoreticlllly possible to have a
generillization whose components are defined by
different llssocilltion types. in practice it does
not seem to be useful to generillize dissimilar
concepts. The grouping of dissimil"r objects is
however meaningfUl in certain situations and is
llchieved using the COMPOSITIOH llssociation of
SAM".

The so-clllled notion of Attribute Inherit
ance Clln lllso be modeled in SAM- llS shown in
figure 5. Here llll the entity types forming the
generic type have II common llttribute. Instead of
repeating the llttribute WEIGHT in the definition
of LAND-VEHICLE, WATER-VEHICU:. and AIR-n:HICU:.
it is used as a component of the llggreglltion
association VEBICL!:_CKAlI. in which the generic
type VEBICLE is the ~ey attribute whose values
llre the set of llll VEHICLE occurrences, and
WEICHT is the other llttribute.

We note here that, a. with tbe other llSSOC
illtion types. a Generic Hierarchy Clln be defilled
for the generllli%lltion llssocilltion. For example.

MAN_HADE_THING is II generic type over TRANSPOR
TATION_EQUIPMENT. which is a generic type over
VECHICLE. etc.

We summari%e the structural properties llnd
constraints of the generllli%ation llssocilltion :
(1) The occurrences of a generic type are formed
by either taking the outerjoin of its component
concept types Cl. C2, ... Cn. or the union of
the key llttributes of Cl, C2, ... Cn. In case
of the outerjoin represent"tion. the attributes
of the generic type is the union of the llttribu
tes of its component concept type.
(2) The generic reliltionship of concepts formed
by llny type of llssociation Clln be explicitly
modeled by generillization. ~hese reliltlonships
llnd the associlltad constraints are trellted as
metll-dllta llnd llre stored in the dlltll dictionary,
(3) N-concepts can be grouped to form a generic
type (N)l). These concepts can be defined by the
Sllme or different sets of component concept
types but their key attributes must be defined
over the same domain.
(4) The set relationsbip between each pllir of
the component concept types may be of type set
subset. set intersection. set exclusion or set
equillity. These set reliltionships are the integ
rity constrllints associllted with the generlllizll
tion.

3. MOD!:LING PARTITIONED DATABASES

Having discussed the needs and concept of horiz
ontal and vertical partitioning of data and the
notion of generalization, "'e now deal with the
problem of modeling partitioned databases with
/Yithout replication.

A study of distributed database management
systems and the kind of data that needs to be
partitioned has led us to identify the following
useful types of partitions :
(1) Horizontal Partitioning without Replication.
(1) Horizontal Partitioning ..,ith partial Replic
ation.
(3) Horizontal Partitioning with complete Repli
cation.
(4) Horizontal Partitioning with Subsetting.
(5) V~rtical Partitioning with Replication.
(6) Vertical Partitioning without Replication.
(7)-(14) combination of (1)-(4) with each of
(5), (5).

For each of the above cases, we show what
the partition means in terms of the relational
model and explain how it can be modeled using
the SAM- generalization construct. We also list
the insertion/deletion/update constraints on the
partitioned data necessary to enforce database
integri ty and consistency.

We treat the primary key as just another
attribute and allow it to be modified. For each
of the partition case. the folloWing general
rules must hold at all times:
(1) ENTITY INTEGRITY RULE : The primary key
value cannot be null in any of the relations
(non-key attributes may.or may not be null).
(1) UNIQUE ~EY CONSTRAINT : The primary key
value cannot be replicated in any of the relat
ions.

3.1 Horizontal Partitioning without Replication
F'igure 7(a) illustrates the case of horizontal
partitioning without replication ..,here a certain
set of tuples from R forms Rl and another set
forms R2. There is no overlap between the two
sets of tuples. The situation can be modeled as
shown in fi9ure 7(b) where Rl(A, Bl, B2, B3, B4)
and R2(A. Bl. B2. B3. B4) are shown as aggregat
ion nodes (The attribute A being the key in both
the relations). The constraint SX on the G node
ensures that there is no overlap of key values
in these two sets of occurrences. The C nodes
representing sitel and siteJ indicate that Rl is
present at sitel and R2 is present at site2. A C
node represents the composition aSSOCiation in
SAM- and groups similar or dissimilar concept
types. It identifies a sub-database within a
database.
CONSTRAINTS :
INSERTION : Before inserting a tuple (A, Bl. 82.
B3. B4) in Rl or R2. verify that the key value
(thus the tuple) does not exist in R2 or Rl
respectively.
DELETION: No constraint•.
UPDATE: Before modifying the key value in
Rl/R2 ensure that the key value does not exist
in R2/Rl.

3.2 Horizontal Partitioning with Partial Repli
cation
Figure 8(a) illustrates the case of horizontal
partitioning with partial replication. The key
values of the tuples of Rl and R2 (A. Bl. B2,

B3, B4) are allowed to overlap. This fact is
implied by the SI constraint on the G node
(figure 8(b». The relations Rl and RJ are
represented by aggregation nodes and reside at
sitel and siteJ respectively, as shown by the C
nodes.
CONSTRAINTS :
INSERTION: Before inserting a tuple in Rl or
R2, check if that value of A is present in R2 or
Rl. If the value exists in the other relation.
then verify to ensure that the non-key
attributes of both tuples have the same values.
In the case that the value of A is not present
in the other relation. check with the overlap
condition specified to see whether it also
should be inserted in the other relation.
DELETION: If the tuple to be deleted from any
one of the relations is present in the other
relation make the deletion in both relations.
UPDATE: Check ..,ith the overlap condition
specified to see if the tuple that is being
modified exists in the other relation. If it
does, make the same modification to the other
relation.

3.3 Horizontal Partitioning with eo.plete Repli
cation
F'igure 9(a) illustrates the case of horizontal
partitioning with complete replication. The
figure illustrates the simple case of R-RI-R2
but in the more general case we can have
Rl-R2-some subset of R. This situation is model
ed in figure 9(b) where the SE constraint on the
G node ensures that every occurrence of Rl is an
occurrence of R2 and vice-versa. The A nodes
represent the partitioned relations and the C
nodes the sites.
CONSTRAINTS ,
INSERTION: Every tuple inserted in Rl/R2 must
be inserted in R2/Rl.
DELETION: Every tuple deleted from Rl/R2 must
be deleted from R2/Rl.
UPDATE: F'or every tuple modified in Rl/R2,
the same changes must be made to the correspond
ing tuple (same key value) in R2/Rl.

3.4 Horizontal Partitioning with SUbsetting
Figure lOCal illustrates the case of horizontal
partitioning with subsetting. The set of tuples
that constitute R2 is a subset of the set of
tuples that constitute Rl. The figure illustrat
es the special case of R-Rl but in general this
may not be true. The above situation can be
modeled as shown in figure lOeb) where the ST-SS
constraint on the G node ensures that every key
occurrence of R2 is a key occurrence of Rl, thus
every tuple of R2 is a tuple of Rl. The A nodes.
as usual, represent the relations Rl and R2 and
the C nodes the Sites.
CONSTRAINTS:
INSERTION: Every tuple inserted in R2 must be
inserted in Rl and every tuple inserted in Rl
must be checked against the subsetting criteria
specified to see if it should also be inserted
in R2.
DELETION: Every tuple deleted from R2 lllUst be
deleted from Rl and every tuple deleted from Rl
must be checked to see if it exists in R2. If it
does. then it must be deleted from R2 also.
UPDATE: Every tuple modified in R2 .ust be
accompanied by the same modification to the
corresponding tuple in Rl. F'or every tuple modi

fied in Rl, check if that tuple exist. in R~ and

~a~e the same modification to the tuple if it

does.

3.5 Vertical Partitioning without ReplicatioD
Figure ll(a) illustrates the case of vertical
partitioning vithout replication. As mentioned
earlier. a vertical partitioning must invol v e
the replication of the key attribute. When ve
talk of replicatioD, ve are considering only the
non-key attributes. The partitioning of R(A, Bl,
B2, B3, B4) into Rl (A, 81, B2) and a2(A, B3,
B4) can be modeled as shawn in figure ll(b). The
Set Equality constraint ensures that every occu
rrence of Rl has a corresponding occurrence in
R2 yhich is vhat is r&qUired since ve are split
ting the relation R vertically. Rl, R2 represen
ted as aggregation node. have non-key attribute.
(Bl, B2) and (B3, B4) respectively.
CONSTRAINTS,
INSERTION : For every tuple (A, 81, 82) inserted
in Rl a corresponding tuple (A, 83, B4) must b.
inserted in R:Z and vice-versa. The attribute.
ai. B2, 83, 84 may have null value•.
DELETION: For every tuple (A, 81, 82) deleted
from Rl the corresponding tuple (A, 83, 84) must
be deleted from R2 and vice-versa.
UPDATE : The non-key attributes in both
relations may be modified with no con.traint on
the other relation unless there i. aD inter
occurrence constraint associated with the updat
ed attribute values. Any change made to the
primary ~ey value, A, lIIust hawever be reflected
in the other relation.

3.6 Vertical partitioninq with ReplicatioD
Figure 12(a) illu.trate. the partitioning of
R(A, 81, 82, 83, 84) into Rl(A, 81, 82, 83) and
R2(A, 83, B4). In the above case the non-key
attribute 83 is replicated in both relation. Rl
and R2. The situation can be modeled a. shawn in
figure 12(b), where as usual the A node. repre
sent the relation. and the C nodes the site•.
The SI: constraint ensure. 'that for any hal f of
the tuple (of R) present in Rl the other half
(of the same tuple of R) exists in R~.

CONSTRAINorS,
INSERTION: Every tuple inserted in Rl IllUst have
a corresponding insertion in R~ vhere the A and
83 values must be the same and 81, 82, 83, 84
may be null.

DELETION: For every tuple (A, 81, 82, 83)

deleted from Rl, the correspondinq tuple (A, 83,

84) must be deleted frOlll R2.

UPDATE: All non-key, non-replicated attri

butes of Rl and R2 may b. changed independently

of the other relation but changes made to A or

B3 must be carried over to the other relation.

In combination case•• horizontal and verti
cal partitioning are applied simultaneously to
yield blocks or cell. of data from the original
relation. In such case. the stora'Je operation
constraints can be derived fro~ the storage
operation con.traint. associated with the parti
cular type of horizontal and vertical partitions
applied. In order to illustrate this, ve discuss
one example of combination partitioning. The
other cases are similar in nature.

HORIZONTAL PARTITIONING WITH SUBS~TING AND
Vl:RTICAL PAR'1'I'1'IONDIG 1frrB REPLICA'1'ION
figure 13(a) illustrates the extension ot a

relation R. Rl and RJ are combination partitions
of the ori~inal relation yhere the horizontal
partition associated vith R2 is a subset of the
horizontal partition associated yith Rl (all key
occurrences present in R2 are present in Rl).
The vertical partitions associated with Rl and
R2 contain the replicated attribute B3. The
extensions of Rl and R2 are shown in fi~ures

13(b) and 13(c). Figure 13(d) illustrates the
SAM- representation of the above situation.
CONSTRAINTS :
INSERTION : If a tuple (an, bn3, bn4) is insert
ed in R2, the corresponding tuple (an, bnl, bn2.
bn3) must be inserted in Rl. If (am, bml, bm2,
bm3) is inserted in R2, the subset criteria must
be checked to see if the insertion (am, bm3,
bm4) in R2 is necessary.
DEL~ION : If a tuple is deleted from Rl, the
corresponding tuple must be deleted from R2. If
a tuple is deleted from R2. the semantics of the
subsetting must be checked to see if the corres
ponding tuple must be deleted from Rl.
UPDATE: If some attribute(s) is modified in
Rl/R2 and if that tuple and attribute exists in
R2/Rl, the same modifications must be made to
the corresponding tuple in R2/Rl.

4. MAINTAINmC PARTUION IN'FORMATIOH

In this section, the dyn&lllic nature of the part
ition information, vhich is defined by a SAM
schema and graphically represented by a semantic
network will be discussed, So far we have mace
no mention of how the semantic network can be
modified to incorporate changes the user may
make to the existing partition infonla't:icn. In
this section, ve discuss haw the network should
be modified when a change is requested.

The user may vant to do any of the follow
ing three operations:
(1) Create a neY partitiOD. The user mai' want to
further partition Rl into Rl' and Rl" [figure
14), or create another partition R3 from R (fig
ure lSI.
(21 Delete 4D existing partition. The user may
want to remove partitions Rl or R2 f:om the
semantic network.
(31 Modify existing partitions. The user may
want to shift attribute Bl from Rl to R2.

For each of the above cases, the changes to
be mad. to the network to realite the user
request viII be discussed. Before that. however,
the probl em of how the user shou Id cOllllllunicate
his request to the system is considered first.
One solution is to alloy the user to issue
explicit commands to the system. naming the
partitions affected and stating what he/she
v ou Ld like done. 'Ihis would mean that the user
be well versed vith the semantic networ~ repres
enting the partitions. We feel that th~s goes
against the notion of user-friendliness and the
'high-level' notion of a DBMS. The task sbould
then be handled by the system for vhich ve
assume the existence of a powerful query langu
age. which allows the system to infer the desir
ed information from the query issued by t~e

user. As an example, we consider the follovi:Jg
query in an INGRES 1 ike language :

RETRIEVE	 - FROM employee INTO female AT site6
WHERE sex.'f';

,

The given que~ would enable the system to

create a new partition F~MALB vhich contains
only those tuples froa the EMPLOTEZ relation
vhere sex i. 'f'. The created partition is
stored at site6, and the relationship between
the two partitions is of type set-subset.

If the syst~ now received another query

RETRIEVE • rROM employee INTO male AT .ite2
WHERE sex·'a';

It would create another partition MALI: to
be .tored at site2. Again the relationship bet
veen EMPLOYEE and MALE is of type set-subset. We
have also to .pecify the relationship between
MALB and FEMALB as in the network diagraa the
EMPLOTEZ relation is repre.ented a. a G-node
comprising of EMPLOTEZ, MALE and F~MALZ. Set
relationship. have to be specified for each
pair. To achieve that, it is neces.a~ to check
the condition. by which these relations are
formed.

Gi ven any two parti tions Rl and R:2 of the
relation R, there exist four possible ways in
vhich they may be related :~) Rl and R2 are
autually exclusive, 2) Rl/R2 i ••ub.et of
R:2/Rl, 3) Rl and R2 are equal, and 4) Rl and
R:2 have .oae inter.ection of an unknown nature.

The nature of the relationship between Rl
and R2 can be determined by examining the WHERE
predicates of the queries that created the part
itions. The examining of the Where clause can be
handled most conveniently by usin9 the Conjunct
ive NoraaI. Fora. (CNFs) of the above mentioned
vhere predicates. We now present a discussion of
the procedure to determine the relation.hip
between any two partitions. For the purpose. of
this discussion, we a.sume that Rl and R:2 are
partitions of the reI.ation R and the CNFs of the
corresponding partitions are of the form CNFl •
(attrll oprll parll) and (attrl:2 oprl:2 par12)
and and CNI':2 • (attr:2l opr:21 par:2l)
and (attr:2:2 opr:2:2 par:2:2)

(1) T!:STIJ'IG PO. M'C'l'tTAL J!:XCLtI'S:ION
Compare the first conjunct of CNFl with every
conjunct of CNF2 in turn. If there is no aatch
between attrll and any attribute of CNF:2 the
comparison proce.s is repeated with the next
conjunct of CNF2 until there is a aatch or aI.l
the conjuncts of CNFl are exhausted without
yieldin9 a match.

In case no attribute of CN!'l aatches any
attribute of CNF:2, Rl and R:2 mayor aay not
share an intersectin9 domain and we may conclude
that Rl and R2 fall under case 4.

In case soae attribute in CNFl (attrln)
matches an attribute in CN!':2 (attr2n), this pair
i. examined further for deterainin9 whether
their associated conditions are autually exclu.
ive. For example, if oprln (correspondin9 to
attrln) is '>-' and opr2a (corresponding to
attr:2m) is '<' and parln - par2a - constant then
Rl and R2 are mutually exclusive. In general ve
can pass the matchinq pair through rule. of the
form :II' oprl - ' . and opr:2 - ' , and parln OP
par2m THEN the partitions are mutually exclus
ive, vhere OP repre.ents a boolean operator.

In a case where there is more than one
attribute matching, then anyone of the pairs
can render the partition. mutually exclusive
since we are using the conjunctive normal form.

If ve cannot show the partitions to be mutually
exclusive, we proceed to check if they form a
set-subset relationship.

(:2) TESTING FOR SET-SUBSE'1' (Rl < R:2)
If no attribute value in CNFl matches ~ny ~ttri

bute value in CNF2, then we cannot conclude that
Rl is a subset of R2 ~nd Ye conolude case 4. If
there exists ~t least one matched ~ttribute,

found in comparing CNFl and CNF:2 such th~t the
CNF:2 conjunct spans over the CNFl conjunct (this
can be determined by pas9inq the matching con
juncts through rules of the type discussed in
e a ae (1)), then Rl can be concluded to be a
subset of R2 prOVided that no conjunct of CNFl
spans over a conjunct of CNF2 and there are no
~dditional conjunct. in CNF2 (no terms restrict
ing the values of ~n attribute that is not
present in CNF1).

(3) TE5T:ING FOR SET-EQUALITY
If Rl i. determined to be a subset of R:2 in :2.
then the possibility of set-equality between Rl
and R2 mu.t be verified. This is done by testing
if R2 is a sub.et of Rl using the methodology
outlined in 2. If Rl < R2 and R2 < Rl, then we
can conclude that Rl - R2.

(4) EUS'%'!:HCI OF 5rz nrn:RSECTION
This option is relevant when ~ll the above test.
fail to establish some definite relationship
between Rl and R:2. Here. ve assume that Rl and
R2 intersect in an undetermined fashion. This
case thus serves ~s a default case and caters to
all partitions vhich cannot be explicitly clas.
ified.

We now return to the problem of modifying
the existing netvork, once a user request has
been received ~nd identified. As mentioned earl
ier. the system can receive three classes of
requests. We discuss each one in turn through
example•.

(A) 0U!:Aft: A MZIJ PAR'l'rUON

Here ve identify two type. of reque.ts :

(a) Partition a relation that is itself a parti
tion of another relation. For example, partition
Rl into Rl' and Rl" (figure 14).
(h) Create another partition from a relation
that is already partitioned. For example create
Rl from R in addition to Rl and R:2 (figure 15).

For requests of type (a), we need to make
the folloYing modifications to the semantic
netvork :
(al) Convert the node representing the relation
to be partitioned (Rl) to a G node and remove
all attribute pointers from the node.
(a2) Create as many A nodes as the number of new
partitions desired. These nodes are the compon
ent concept types of the G node in (~l).

(a3) Create as many C nodes as the number of new
(non-existant) sites required and connect them
to the appropriate A nodes which represent the
partitions being stored at these sites.
(4a) Create Ii nodes (mayor may not be dupli
cated) for the attributes that comprise the
resulting partitions. These attributes initially
formed r e I ation RI and the resulting semantic
networ~ must be consistent with this notion. If
some attribute of RI had a relationship vith
a nc t h e z entity outside of the part of the net
\lork beinq considered, the relation.hip should

http:i��ub.et

be maintained even after the modification.
(as) Specify set relationships between each pair
of A nodes created in (a:l).

The suggested modifications transforms the
semantic network into the one shown in figure
14. However, it should be noted that the rela
tion Rl as shown in the figure i. present only
in the logical view of the database and doe. not
exist physically. Therefore we can only make
this transformation if the union of the set of
tuples comprising Rl' and Rl' is the same as the
set of tuple. comprising Rl. If this is not
true, we will loose some information in making
this transformation and need to physically store
Rl. In terms of the network it will Illean crea
ting another A node (Rl) under the G node in
addition to the ones in (a2) with a set-subset
relationship with all the other nodes.

It is mentioned here that changing the A
node representing Rl to a G node as suggested in
(al) is insiqnificant with regard to any prev
ious relationships involving Rl. The A node
representing Rl before modification denoted a
set of tuples constituting the relation Rl. The
same meaning is retained by changing it to a G
node which represents an outerjoin of the const
ituent partition•.

Por requests of type (h), we suggest the
following modification. to the existing semantic
network :
(hl) Create another A node representing RJ as
another component concept type of the G node
representing R.
(b:l) Specify .et relationships between the

created node in (hl) and all other existing A

node•.

(bJ) Create another C node, if required, to

denote the site at which the new partition will

be stored.

(b4) Show the attribute. of the created partit

ion RJ by pointers to the desired attributes.

The result of the transformation will he
the semantic network shown in figure 15.

(B) D!:I.E'%'!: AN EUS'l'DIG PARTUXOK
To delete the partition Rl from the database, we
propose the following modifications
(a) Remove the A node representing the partition
Rl.
(b) Remove all pointers to that node.
(c) RltIIIove all pointers from that node.
(d) Remove all nodes and the pointers to and
from the nodes that are existentially dependent
on the node removed in (a).

The above transformation yields the network
diagram as shown in figure 16.

We note from the figure that the G node
present no longer serves any useful purpose and
should be deleted from the semantic network. The
removal of tha G node, however, may have additi
onal triggering effects since it may be involved
in other as.ociations and the consequences of
its removal must be propogated throughout the
network.

Let u. assume that after the transformation
applied earlier, the network is as shown in
figure 17(a). We now discus. the consequences of
deleting the G node, in view of its relation
ships with nodes Xl through X4. It should be
mentioned here that this discussion is applicab
le only to G nodes as in figure 17(a) which have
only one constituent type and are involved in

relationships vith other nodes.
For the A and I nodes (I node in SAM

models the relationship between/among indepen
dent concept types), the r~moval of tne partit
ion Rl translates to the removal of all tuples
from the set whose key value matches any of the
key values originally present in Rl but not in
R2. Tnis modification is necessitated due to the
fact that Rl is now non-existant and it's occur
rences should be deleted from wherever they
existed. The G node can now be removed and the
nodes Xl. X2 can be connected directly to the A
node representing R2.

For the C node, it suffices to just. remove
the G node and connect it directly to the A node
representing 'R2 since the C node is a collection
of the occurrences of it's component concept
types.

The above mentioned procedure, to account
for the A, I and C node. can be applied recursi
vely to the G node (X4) provided it meets the
requirements of haVing only one component con
cept type and being invol ved in relationships
with other nodes. The resulting transformation
is shown in figure 17(b).

(C) HODIFnNG A PARTITION
The operation of modifying a partition (add 81
to R2) involves the shifting of attributes from
one partition to another and lIIay not he as
useful as the previous two operations as it
involves only a restructuring of the network and
no addition or deletion of information. It can
be re~lized by a change of pointers or depending
on the request, a duplication of an existing
node.

All the proposed modification steps should
be treated as one operation which is valid only
on the completion of all the steps, Partial
completion may lead to serious problems, which
may he difficult to retract. The creation of
each new partition must also be accompaaied by
the storage of the partiti~n criteria in the
data dictionary, This would enable the system to
maintain consistency in the database as tuples
are inserted and will also be useful in defining
set relationships should another partition be
created at run t1llle.

5. CONCLUSION

A modeling construct and some techniques for
modeling and processing partitioned and repli
cated databases have been presented. The genera
li~ation association of SAM- and its associated
set constraints are used to explicitly model
fourteen meaningful combinations of partitioning
and replication of data. Storage operation rules
for forcing the integrity of data partitions
have been presented. Strategies and rules for
handling dynamic creation and modification of
partitions using schema modification have also
been described. The model, rules and techniques
presented in this paper are useful for logical
database design of both centralized and distri
buted databases.

Our future work in this area includes: (1)
developing a methodology to determine an opt~um

fragmentation scheme based on user/transact~on

requirements.(2) investigating strategies for an
optimum Fragment-Site allocation scheme in a
heterogeneous environment.(J) developing a query

modification algorithm to r.tri.v./updat. data
from fragm.nt.d r.lation. when a qu.ry aak••
referecc. to th. original r.lation.

(1) S.Ceri. M.Negri and G.Pellagllti. Horizontal
Partitioning in Databa •• O•• ign. ACM-SIGMOD.
1982.
(2) S.C.ri. S.a.Navath. and G.W.id.rhold. Di.
tribution De.ign of Logical Oataba•• Scheaa••
U:O:-TSE. 51:-9,4. 1983.
(3) S.B.Navath•• s.cee s , G.W.iderhold and J.Oou.
Vertical Partitioning Algorithm. for Oataba••
D•• ign. ACM Transaction. on Databa.e System••
Vol. 9. no.4. Dec. 198 ... pp. 680-710.
(4) M.Hamm.r and a.Niamir. A Heuri.tic App:t'oach
to Attribute Partitioning. ACM-SIGHOD. 1979.
(5) M.J.Eisn.r and D.G.S.v.rance. Mathematical
Techniqu.. for Efficient Record S.gm.ntation in
Larg. Shar.d Databases. Journal ot the ACM.
23: 4. 1976.
(5) W.W.Chu. Optimal File Allocation in a Multi
pl. COIIIPUtU System. I!:!:E-TC. C-18:10. 1969.
(7) H.L.Morgan and J.D.L.vin. Optimal Prograa
and Data Location. in Comput.r N.tvQrks. Commu
nication. of the ACM. 20,S, 1977.
(8) C.V.Ramamoorthy and a.If.lfah. ·Th. Plac.ment
ot Relation. in a Distribut.d R.lational Oata
ba••• • Proc. Fir.t Int. Cont. on Di.tributed
Computing Sy.tem.. 1979.
(9) P.P.S.Ch.n and J.Akoka. 'Optimal D•• ign ot
Distributed Information System•• ' IEEE-TC. C
29,12. 1980.
(10) R.M.Lee and R.G.rrits.n. Extending seman
tic. for gen.rali~ation hierarchi••• in Proc.ed
ings of ACM/SIGMOD International Conf.r.nce on
Managem.nt of Data. Austin. Tex.. 1978.
(11) J.M.Smith and D.C.P.Smith. Databa•• abstra
ctions, Aggregation and G.neralization. ACM
Tran•. on Oataba•• Syst.m. 2(2), 105-333 (Jun.

1977) .
(12) Quillian. M.R.• Seaantic aeaory. In Selllan
tic Information Proce•• ing. M.I.T. Pres., Camb
ridg.. Ma.... 1958. pp.227-:l58.
(13) Oat •• C. ·Th. Out.r Join.' in Proc. 2nd
Intl. Conf. on Databa•••• Cambridge. England.
S.ptemb.r 1983. pp. 75-106.
(14) Dayal. U. ·Proc••sing Qu.rie. O...er Gen.ra
lization Hierarchi•• in a Multibase System.' in
Proc. 9th cont. v.ry Larg. Data ba •••• Augu.t
1983. Milan. Italy. pp. 34:1-353.
(15) Reiner.D.• and Ros.nthal. A. 'Extending the
Algebraic Framework of Query Proce.sing to Rand
1. Outerjoin•• • in lOth Intl. Conf. Very Large
Data aases. Singapor•• Auqust 1984. pp. 112-120.
(15) Smith.J.M .• P.A.Bernstein. U.Oayal. N.Good
man. T.Land.rs. It.W.T.Lin and E.Wong. 'Multi
bas.-Integrating h.t.rogeneous distributed data
base system.'. Proc. AFIPS NCC 1981. pp.487-499.
(17) Land.rs.T.,and Ro.enberg. R. 'An Overvi.w
of Multiba••• • in Proc. 2nd Intl. Symposium on
Distribut.d Data Ba.e •• H.J.Schneider (ed.).
Septemb.r 1982. Berlin. F.R.G .• pp. 153-18".
(18) Oayal.U .• and Hwang. H. ·vi • ." Definition
and G.n.ralization for Data bas. Integration in
Multiba••• • trEE Tran•. on Software Engin••ring.
Volume SE-10. Numb.r 5. Novemb.r 1984. pp. 528
5U.
(19) Mannino. M.• and Eft.lsberg. W. '1. Methodo
logy For Global Schema De.ign.· Univer.ity of
Florida. C.I.S. D.pt. Technical Report No. TR
U-l. Septemb.r 19U.
(20) Suo S.T.W.• 'SAM A Semantic A••ociation
Mod.l for Corporat. and Scientific-Statistical
Databa.e•• • Information Science.. 29. 1983. pp.
lSl-199.
(21) Suo S.T.If.• ·Mod.ling Integrated Manufactu
ring Data U.ing SAM-.· Proc. of Data Base sys
tems for Offic•• Engineering and Science. ~ar
lsrub., W.st G.rmany. March 1985. also IEEE
COMPUTER. vol.19 no. 1. Jan 1985. pp. 34-49.

S· SCITY ~. ~ITY

SI LCiflDON ~I LCiflDON
52 fOAIIIS ~7 1'1('1' YQIlI(

S3 N('I' YQIlI(~1 A~

1"1

,~. SCITY ~ "CITY

SI LOfC)(lN ~, LOHOOfl
52 ~ AllIS IU.L !U.l.
51 I'I('I'YOIlK ~7 1«'1' YOIIIIC

MA.L IU.L ~1 AT'>«ItS

O£SlGNo

FIOUl£] S[T [QUALITY CDHSTltA..T5
FICUtE 1: srr EXo..USIOfl CDHSTRAM'

FIOUlE 2: ,.,. [x......v; or OlJTElt
EClUL.OIN

(N~ -or

I'tl~CT·

A~
M6)l@

~. ~T

EMPlOY[[S
rlOUR[', SET "T[.SECTION CONSTU..T

1"1

,- M"I~ ~ASSf'C"TICft

FIOUR[' SET SVlS[T CONSTRA..T

M M

L.AK)- 'WATOIl" '"
YO<0.[YO<C\.[YO<CL£

rlClUlt['OtrT""CE 01 'w't0lT

• • •

• • •

RI

9291 91 I S4

FlQUtt 7(,) : i«lRIZONT Al.I'ARTrT1OHS r10~E8 (,) : MOIIIlONT AI.I' ARTrT1CIHS F~['C,) . ><lIlIZONT AI.I'ARTrT1ONS
'l'IT><OUT RE1'I.lC ...TIOfl 'l'1TH'ARTIAI. RE1'I.IC4TIClN 'l'1TH COI'1'\..ETE Ilt:!'t IC4 TION

M M \M

A II 12 U B44 II 12 U 14

,~E 7(1) : M MOO£I. F~ I'ARTrT1OHS., 1..2 ,IGUIIE I(b) : M MOOn ,OIl , ARTrT1OHS., I.It2 ,~E ,Cb) : M MOOn FOIl I' ARTrTlOt<S II. 1.112
A II 92 U 14

'1OUtf 10(0) : MOIIIZONT AI. I' ARTrrIOflNl rl:lUIE 11<,) ,YEllTICAl.I'ARTrTIOI'UCI ,lOUlE 12(0) : vtRTlCAl.I'ARTrTIOI'lNl
'l'1TH$\.85[TTNI 'tm«lUT ~1C"'TIClIO 'l'1TH .lEl'I.IC4TIOfl

M

SITt1

M

... II S2 n 84 A 11 12 II 14 ... II 92 83 94

,IGVIU: 100b) ,M MOOn,~ I'ARTrTlOHS 111 I. R2 ,\GUIlE 11(0) : M MOOn ,OIl 'ARTrT1CIHS.' I. .2 'IGURE 12Cb) : 1'l€ MOCEl,OIlI'ARTrTlONS R' &.112

SrTt:2

M M

SlTtl

C

A
.,

12 83 14

,I
,2
,1
,4

b II
b21
bll
1>41

bl2
b22
b12
1>42

bll
b21
bJl
b41 -

bl4
b24
b14

A II 12 U

,I bll bl2 "I
,2 b21 b22 b2J
,I bll b12 bJl
,4 b41 b42 b4l

SITtI

C

M

II B2 U 14
FIGURE Il(b) 81 4 92

nOIAlE 14 : I'ARTrTlON111 mo 11\' 1..", ,;OUR(.~ : CRE...TNO III rIlOM II
'~E 11Cd)_IZONTAI. 'ARTrTIONNI
'l'rTfi !MISETTNO AIC) vtRTlCAI.
I' ARTrt IONNl 'tlTl4llf:101.lC ...TIOfl

M

\"1

II 12

S~ ';tS€
_ _ -' 112

...

srrn

fJ,.
-'

srm

~ '~~,
-' ~~

M H M
.

Gf (2) 8
... 12 BJ A B2 BJ A 92 U

FIGUlE " . 1'l€ 0' AeIl...,., AFT!Il
C>(\,ETNlII1

FIGUIIE 17C,) : ~ "l:T'YOIlK01...011...,.,
AF"T£Jl 1'1lAHS,OItI'<...TION

FIOURE 17Cb) . Tl<!: '<t.....,OIlK O'...ClI4M
",-Ell MOOFlCATION

...~..,....t t'I'\e4It('-4

M

